A Generalization of Resource - Bounded Measure , With Application to theBPP vs

نویسندگان

  • Harry Buhrman
  • Dieter van Melkebeek
  • Kenneth W. Regan
  • Martin Strauss
چکیده

We introduce resource-bounded betting games, and propose a generalization of Lutz's resourcebounded measure in which the choice of next string to bet on is fully adaptive. Lutz's martingales are equivalent to betting games constrained to bet on strings in lexicographic order. We show that if strong pseudo-random number generators exist, then betting games are equivalent to martingales, for measure on E and EXP. However, we construct betting games that succeed on certain classes whose Lutz measures are important open problems: the class of polynomial-time Turing-complete languages in EXP, and its superclass of polynomial-time Turing-autoreducible languages. If an EXP-martingale succeeds on either of these classes, or if betting games have the \ nite union property" possessed by Lutz's measure, one obtains the non-relativizable consequence BPP 6= EXP. We also show that if EXP 6= MA, then the polynomial-time truth-table-autoreducible languages have Lutz measure zero, whereas if EXP = BPP, they have measure one.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the generalization of Trapezoid Inequality for functions of two variables with bounded variation and applications

In this paper, a generalization of trapezoid inequality for functions of two independent variables with bounded variation and some applications are given.

متن کامل

A Generalization of Resource-Bounded Measure, With an Application (Extended Abstract)

We introduce resource-bounded betting games, and propose a generalization of Lutz's resource-bounded measure in which the choice of next string to bet on is fully adaptive. Lutz's martingales are equivalent to betting games constrained to bet on strings in lexicographic order. We show that if strong pseudo-random number generators exist, then betting games are equivalent to martingales, for mea...

متن کامل

Some Properties of Continuous $K$-frames in Hilbert Spaces

The theory of  continuous frames in Hilbert spaces is extended, by using the concepts of measure spaces, in order to get the results of a new application of operator theory.  The $K$-frames were  introduced by G$breve{mbox{a}}$vruta (2012) for Hilbert spaces to study atomic systems with respect to a bounded linear operator. Due to the structure of  $K$-frames, there are many differences between...

متن کامل

ar X iv : 1 10 2 . 20 95 v 1 [ cs . C C ] 1 0 Fe b 20 11 Axiomatizing Resource Bounds for Measure ⋆

Resource-bounded measure is a generalization of classical Lebesgue measure that is useful in computational complexity. The central parameter of resource-bounded measure is the resource bound ∆, which is a class of functions. When ∆ is unrestricted, i.e., contains all functions with the specified domains and codomains, resource-bounded measure coincides with classical Lebesgue measure. On the ot...

متن کامل

Measure of non strict singularity of Schechter essential spectrum of two bounded operators and application

In this paper‎, ‎we discuss the essential spectrum of sum of two bounded operators‎ ‎using measure of non strict singularity‎. ‎Based on this new investigation‎, ‎a problem of one-speed neutron transport operator is presented‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998